Showing posts with label outer. Show all posts
Showing posts with label outer. Show all posts

Saturday, August 26, 2017

Translation Invariant of Lebesgue Outer Measure

Translation Invariant of Lebesgue Outer Measure


Another proving problem, this time on Real Analysis.

Problem

  1. Prove that the Lebesgue outer measure is translation invariant. (Use the property that, the length of an interval $l$ is translation invariant.)

Solution

  1. Proof. The outer measure is translation invariant if for $yin mathbb{R}$, egin{equation} onumber mu^{*}(A)=mu^{*}(A+y) end{equation} Hence, we need to show that Case 1: $mu^{*}(A)leq mu^{*}(A+y)$; and Case 2: $mu^{*}(A+y)leq mu^{*}(A)$.

    Case 1: Consider a countable collection ${I_n}_{n=1}^{infty}$, and let egin{equation} onumber W = left{displaystylesum_{n=1}^{infty}l(I_n)mid Asubseteqdisplaystyle igcup_{n=1}^{infty}I_n ight} end{equation} Then the outer measure of $A$ is, egin{equation} onumber mu^{*}(A)=inf,{W}. end{equation} Now consider $xin W$, then there is a particular collection $hat{I}_n$ that covers $A$, such that $displaystylesum_{n=1}^{infty}l(hat{I}_n)=x$, and that of course is the $inf,{W}$. Further, we see that the collection ${hat{I}_n+y}$ covers $A+y$, that is, $A+ysubseteq displaystyle igcup_{n=1}^{infty}{hat{I}_n + y}$. And from this, we obtain the following outer measure: egin{equation} onumber egin{aligned} mu^{*}(A+y)&=displaystylesum_{n=1}^{infty}l(hat{I}_n+y) &=displaystylesum_{n=1}^{infty}l(hat{I}_n),; ext{since};l; ext{is translation invariant}. &=x. end{aligned} end{equation} And therefore, $Wsubseteqleft{displaystylesum_{n=1}^{infty}I_nmid A+ysubseteq displaystyle igcup_{n=1}^{infty}I_n ight}$, implying $mu^{*}(A)leq mu^{*}(A+y)$.

    Case 2: Using the same flow of reasoning as in Case 1, consider a countable collection ${I_n}_{n=1}^{infty}$, and let egin{equation} onumber V = left{displaystylesum_{n=1}^{infty}l(I_n)mid A+ysubseteqdisplaystyle igcup_{n=1}^{infty}I_n ight} end{equation} Then the outer measure of $A$ is, egin{equation} onumber mu^{*}(A+y)=inf,{V}. end{equation} Now consider $xin V$, then there is a particular collection $hat{I}_n$ that covers $A+y$, such that $displaystylesum_{n=1}^{infty}l(hat{I}_n)=x$, and that of course is the $inf,{V}$. Further, we see that the collection ${hat{I}_n+(-y)}$ covers $A$, that is, $Asubseteq displaystyle igcup_{n=1}^{infty}{hat{I}_n + (-y)}$. And from this, we obtain the following outer measure: egin{equation} onumber egin{aligned} mu^{*}(A)&=displaystylesum_{n=1}^{infty}l(hat{I}_n+(-y)) &=displaystylesum_{n=1}^{infty}l(hat{I}_n),; ext{since};l; ext{is translation invariant}. &=x. end{aligned} end{equation} And therefore, $Vsubseteqleft{displaystylesum_{n=1}^{infty}I_nmid Asubseteq displaystyle igcup_{n=1}^{infty}I_n ight}$, implying $mu^{*}(A+y)leq mu^{*}(A)$.

    Since we have shown both cases, then $mu^{*}(A)=mu^{*}(A+y).hspace{3.7cm} lacksquare$

Reference

  1. Royden, H.L. and Fitzpatrick, P.M. (2010). Real Analysis. Pearson Education, Inc.

download file now

Read more »